WINSTON MOH TANGONGHO

LinkedIn: /winston-moh-8730b756/ • GitHub: /WinstonMoh • 507-304-5449 • moh.winston@yahoo.co.uk

EDUCATION

EDUCATION	
	iversity Boston, MA
• 0	of Computer Science
Master of Science in Computer Science / GPA: 3.5/4.0 May 20	
	Scalable Data Management, Deep Learning, Scalable Distributed Systems, Data Structures and
	Algorithms, Design Paradigms, Computer Systems, Artificial Intelligence, Machine Learning
	University, Mankato Mankato, MN
	ce in Computer Engineering / GPA: 3.8/4.0 May 2018
	Computer Hardware and Organization, Algorithmic Structures, Digital and Electronic Systems Design,
TECHNICAL K	Software Engineering, Operating Systems Design, Fundamentals of Software Development
	ems: Linux (Ubuntu), Windows OS
Languages:	C/C++, Java, Python, Golang, C#, MATLAB, Flutter
 Software: 	Kubernetes, JIRA, Git, Visual Studio Code, Microsoft AZURE, Amazon AWS
 Databases: 	MongoDB, DynamoDB, SQL
• AI/ML	TensorFlow, Keras, VGG15 Neural Networks
WORK EXPERI	ENCE / ACADEMIC PROJECTS
Software Develop	oment Engineer Intern, Amazon Web Services June 2020 – August 2020
• Worked on a fe	ature to integrate Amazon Support with a chat-based system to provide more flexibility for our premium
Customers to crea	ate and track their support cases. Utilized tools such as Java, CloudFormation and CloudWatch.
	AWS Step-Function together with a state-machine to periodically poll an AWS Service endpoint to get the
	a support case. An AWS Lambda function was created to interact with the API endpoint.
	Reinforcement Learning model for 6 hours by designing a reward function and adjusting its
	to compete in an AWS DeepRacer tournament. The model utilized TensorFlow, Amazon SageMaker and
	icy Optimization Algorithm for training. It was then evaluated on the AWS re: Invent 2018 track during
	ed 3 laps with an average time of 18 seconds.
	ering Intern, Datadog January 2020 – May 2020
0	ent parts of a consumer application (Golang production code) to add a Kubernetes readiness check on
	p. This improved traffic to the pods in case the application crashed during startup.
	ing on a metric for two services which ran on Kubernetes with extra features to the existing HPA. This
-	ny money, reduced the number of nodes by \sim 70 and made our systems more reactive to capacity changes.
	ew gRPC endpoints for an in-house application in Golang with batching for API calls to improve latency
	ting with the Postgres servers.
	rama client which implemented consumer groups by storing consumer offsets in Kafka instead of
	improved the consumer lag and also removed a deprecated feature which stored consumer offsets in a
different client.	improved the consumer hag and also removed a deprecated readile which stored consumer offsets in a
	ion in Top Trending YouTube videos, Northeastern University September 2019 – December 2019
	ysis of thumbhail images of the videos by performing Feature extraction, Dimensionality reduction and
	lustering with a self-organizing map (an Artificial Neural Network) with a dataset size of 5385 entries.
-	chniques such as word2vec to obtain a representation of the video descriptions.
	Intrix to display a sample of 1000 images after clustering the thumbhails with the Artificial Neural Network
	hat Talk show videos, basketball videos, CNN News videos and music videos from the 'vevo' channel ha
	babilities of being Top Trending videos.
	ander with Reinforcement Learning, Northeastern University September 2019 - December 2019
-	ar Lander environment in OpenAI gym by utilizing Reinforcement Learning techniques such as SARSA
	earning to train the Agent by using the Keras API.
-	
	Network parameters of the Deep Q Network to obtain a top-performing Agent which solved the environment
	f 200 steps after learning the optimal policy. TIVITIES/HONORS
	insHacks 2018 Hackathon: Challenge Award Winner) Boston, MA
	m to ease use of smart Home Appliances by visually impaired individuals
 National Societ 	y of Black Engineers, Treasurer: Organized fund-raising events and participated in meetings with

• National Society of Black Engineers, Treasurer: Organized fund-raising events and participated in meetings with Department heads to gather enough funds for our yearly Conference and on-campus activities